UNICAP – Universidade Católica de Pernambuco

Prof. Glauber Carvalho Costa

Estrada 1

Lc_{min} = Comprimento mínimo de Transição (m)

Lc_{max} = Comprimento máximo de Transição (m)

θ_s = Ângulo de transição

X_s = Abscissa dos pontos SC e CS

Y_s = Ordenada dos pontos SC e CS

D = Desenvolvimento do Trecho Circular

k = Abscissa do centro O'

P = Afastamento da curva circular (m)

φ = Ângulo central do trecho circular

TT = Tangente Total (m)

E = Distância do PI a Circular da Curva (m)

C = Taxa de variação da Aceleração Radial (m/s²)

V = Velocidade Diretriz (km/h)

e = Taxa de Superelevação na curva circular (%)

r_{max} = Rampa básica de Superelevação admissível (%)

L = Largura de uma faix a de rolamento (m)

F_m = Fator de Majoração

$$V_{c} := 70 \quad \frac{km}{h} \qquad \qquad R_{c} := 350 \quad m$$

$$R_c := 350 \text{ m}$$

$$AC := 49 + \frac{22}{60} + \frac{44}{3600}$$
 AC = 49.37888889 graus

$$AC = 49.37888889$$
 gra

A- Cálculo do Comprimento Mínimo da Espiral de Transição (Lcmin)

A1 - Critério Dinâmico ou Solavanco Transversal Adimissível - Crtitério de Conforto

C := 0.60 C = Taxa de variação da Aceleração Radial (m/s²)

$$Lc_{min1} := \frac{0.0214 \cdot V^3}{R_c \cdot C}$$
 $\left(\frac{0.0214}{C}\right) = 0.036$ $Lc_{min1} := \frac{0.036 \cdot V^3}{R_c}$ $Lc_{min1} = 35.28$ m

A2 - Critério do comprimento mínimo absoluto

$$Lc_{\text{mind}} := \frac{0.036 \cdot V^3}{R_c}$$

$$Lc_{min1} = 35.28$$
 r

Quadro 5.4.5.3 - Comprimentos mínimos absolutos de L

V (km/h)	40	50	60	70	80	90	100	110	120
L (m)	30	30	30	40	40	50	60	60	70

$$Lc_{min2} := 40.000$$
 m

A3 - Critério da rampa máxima de superelevação admissível

Quadro 5.4.5.4 - Rampas de superelevação admissíveis para pistas de 2 faixas com eixo de rotação no centro

V (km/h)	40	50	60	70	80	90	≥100
r (%)	0,73	0,65	0,59	0,54	0,50	0,47	0,43
	(1:137)	(1:154)	(1:169)	(1:185)	(1:200)	(1:213)	(1:233)

 $R_{min} := 170 \,\mathrm{m}$

OBS: e_{max} e R_{min} variam em Função da Classe da Rodovia

$$e\% := e_{\text{max}} \left(\frac{2 \cdot R_{\text{min}}}{R_{\text{c}}} - \frac{R_{\text{min}}^2}{R_{\text{c}}^2} \right) \quad e\% = 5.884 \quad \%$$

$$L := 3.5 \,\mathrm{m}(\mathrm{dado})$$

Fm := 1.0 (Pista com uma faixa de rolamento)

r% := 0.54

(Tabela 5.4.5.4)

$$Lc_{min3} := Fm \cdot \frac{e\% \cdot L}{r\%}$$
 $Lc_{min3} = 38.138$ m

$$Lc_{min3} = 38.138$$
 m

A6 - O valor do Lcmin deverá ser o maior dos três Lc_{min1}, Lc_{min2}, Lc_{min3}), devendo ser múltiplo de 10m ou de 20m

$$Lc_{min} := max(Lc_{min1}, Lc_{min2}, Lc_{min3})$$
 $Lc_{min} = 40$ m

B-Cálculo do Comprimento Máximo da Espiral de Transição (Lc_{máx})

$$Lc_{\text{máx}} := \frac{AC \cdot \pi \cdot R_c}{180} \qquad Lc_{\text{máx}} = 301.638 \qquad m$$

Tem-se que o valor do comprimento da Espiral (Lc), deverá ser maior que o Lc_{\min} e menor que o Lc_{\min}

Logo, o Lc pode ser igual a
$$L_c := 40.00$$
 m

C-Cálculo do Ângulo de transição

$$\theta_{S} := \frac{L_{c}}{2R_{c}} \qquad \qquad \theta_{S} = 0.057143 \quad \text{rad}$$

D-Abscissa dos pontos SC e CS

$$X_s := L_c \cdot \left(1 - \frac{\theta_s^2}{10} + \frac{\theta_s^4}{216} \right)$$
 $X_s = 39.987$ m

E-Ordenada dos pontos SC e CS

$$Y_{s} := L_{c} \cdot \left(\frac{\theta_{s}}{3} - \frac{\theta_{s}^{3}}{42} \right) \qquad Y_{s} = 0.762 \text{ m}$$

F- Ângulo central do trecho circular

$$AC_{rad} := \frac{AC \cdot \pi}{180}$$
 $\phi := AC_{rad} - 2 \cdot \theta_s$ $\phi = 0.748$ rad

G-Abscissa do centro O

H- Afastamento da curva circular

$$P := Y_s - R_c \cdot \left(1 - \cos(\theta_s)\right) \qquad P = 0.19 \qquad m$$

I- Desenvolvimento do Trecho Circular

$$\mathsf{D} := \mathsf{R}_{\mathsf{c}} \cdot \mathsf{\phi}$$

$$D = 261.638$$
 m

J- Tangente Total

$$TT := k + \left(R_c + P\right) \cdot \tan\left(\frac{AC}{2}\right) \quad TT = 180.989 \text{ m}$$